Калильное зажигание

Какое воздействие на работу двигателя оказывает неправильный подбор свечи

Неправильный выбор свечей зажигания ведёт к повышенному износу и выходу из строя двигателя. Например, установка горячих свечей на работающий под нагрузками мотор приводит к появлению калильного зажигания. Топливо воспламеняется раньше, чем проскакивает искра. Раннее воспламенение обуславливает жёсткую работу двигателя, потерю мощности, повышение температуры отработавших газов и, как следствие, чревато прогоранием выхлопных коллекторов.

Установка холодной свечи на двигатель, работающий на небольших оборотах и с малой нагрузкой приводит к плохой самоочистке электродов от продуктов сгорания. Это ослабляет мощность искры, вызывая перебои в работе. Пропуск вспышек приводит к еще большей закоксованности запальных элементов. Саж и, прочие отложения осаждаются на деталях цилиндропоршневой группы, клапанах газораспределительного механизма (ГРМ), вызывают залегание колец. Потеря подвижности поршневых колец увеличивает расход масла, топлива, повышенный износ.

Основные причины возникновения калильного зажигания

Одна из причин – это малое калильное число свеч зажигания, которое вызывает перегрев. То есть это величина, представляющая из себя время, за которое свечи достигают состояния калильного зажигания. Чем больше это число, тем меньше свечи нагреваются.

Бороться с данной проблемой несложно: достаточно правильно подобрать свечи высокого качества. Основными странами производителями свеч являются Россия, Япония, США, Франция, Италия, Чехия, Сербия и Великобритания.

Свечи, произведённые в той или иной стране, заменяемы их зарубежными аналогами. Вы можете ознакомиться с некоторыми из них в таблице («-» означает отсутствие аналогов):

Что это такое?

Калильное число – характеризует разогрев свечи внутри цилиндра двигателя при работе, когда зажигание воздушно-топливной смеси идет уже не от искры, а из-за горячего корпуса (или электродов). Это очень похоже на дизельный мотор, там топливная смесь зажигается именно от разогрева определенных элементов (свечей накаливания).

Простыми словами корпус как металлический, так и керамический, может сильно разогреться, и уже это будет воспламенять воздушно-топливную смесь, а не искра. Причем смесь может воспламениться в любую секунду, то есть поршень еще не дошел до верхней точки, а скажем на середине пути. Простыми словами проявляется детонация, что негативно влияет на ваш мотор.

Конструкция свечей зажигания NGK. Маркировка. Калильное число

Конструкция стандартной свечи зажиганияМаркировка свечей NGK Буквенная комбинация (1-4) перед калильным числом дает указания относительно диаметра резьбы, раствора шестигранного гаечного ключа, а также особенности конструкции. Пятая позиция (цифра) предназначена для калильного числа. Шестая буква обозначает длину резьбы. Седьмая буква содержит данные относительно конструкционных особенностей специальных свечей зажигания. Восьмая позиция, опять цифра, кодирует особый зазор между электродами.

Калильное число

Современные свечи зажигания индивидуально подбираются для различных конструкций двигателя и условий движения. Поэтому нельзя указать такую свечу зажигания, которая будет без проблем функционировать во всех двигателях.

Так как в камере сгорания различных двигателей температура повышается по-разному, необходимы свечи зажигания с разным тепловым эквивалентом.

Эти тепловые эквиваленты, выраженные с помощью калильного числа, представляют собой измеренные на электродах и изоляторе средние температуры, соответствующие нагрузке двигателя. На юбке изолятора рабочая температура должна быть в интервале от 400°С до 850°С. При этом температуры свыше 400°С требуются потому, что при таких температурах удаляются осаждающиеся сажа и масляный нагар, и таким образом происходит самоочищение свечи зажигания.

Однако выше 850°С температура на изоляторе подниматься также не должна, так как при температуре свыше 900°С может появляться калильное зажигание. Кроме того, при очень высоких температурах электроды дополнительно подвергаются воздействию химически агрессивных соединений или разрушаются.

Для свечей зажигания фирмы NGK применимо простое практическое правило: — низкое калильное число (например BP4ES) — «горячая свеча зажигания», высокое поглощение тепла, обусловленное длинной юбкой изолятора; — высокое калильное число (например BP8ES) — «холодная свеча зажигания», малое поглощение тепла, обусловленное короткой юбкой изолятора.

Свечи зажигания с поверхностным разрядом

Принцип работы свечей зажигания с полуповерхностным разрядом основан на том, что искра зажигания скользит через предпочтительную часть юбки изолятора и удаляет возможные отложения сажи.

Только тогда возникает искровой пробой от юбки изолятора на боковые электроды и происходит надежное воспламенение топливной смеси.

Свечи зажигания с дополнительным искровым промежутком

В случае свечей зажигания фирмы NGK с дополнительным искровым промежутком искровой пробой при сильном покрытии сажей проходит сначала через юбку изолятора, затем перескакивает при формировании искры зажигания на то место, в котором корпус свечи сближается с юбкой изолятора (1). Топливная смесь воспламеняется безукоризненно, двигатель работает нормально.

После достижения температуры самоочищения (>450°C) на юбке изолятора удаляется нагар, и воспламенение опять производится нормальным образом между центральным и боковым электродом (2).Моменты затяжки свечей зажигания Если приложенный крутящий момент затягивания свечи был слишком мал, появляется угроза потери компрессии, отвинчивания центрального электрода и тепловых повреждений из-за пониженного отвода тепла. Дело может дойти и до самостоятельного отвинчивания свечи зажигания. Если же выбран слишком большой крутящий момент затягивания, можно повредить головку цилиндра. Кроме того, слишком большое усилие, приложенное к свече зажигания, может привести к срыву резьбы.

Крутящий момент затягивания можно получить после затягивания путем измерения высоты (толщины) уплотнительного кольца. Свеча зажигания, уплотнительное кольцо которой не сжато, затянута со слишком малым крутящим моментом затягивания. Наоборот, свеча со слишком сильно сжатым уплотнительным кольцом, затянута со слишком высоким крутящим моментом затягивания.

Крутящий момент затягивания для свечей зажигания с плоской посадкой (с уплотнительным кольцом)18 mm14 mm12 mm10 mm
Чугунная головка35-45 Н.м25-35 Н.м15-25 Н.м10-15 Н.м
Алюминиевая головка35-40 Н.м25-30 Н.м15-20 Н.м10-12 Н.м

www.ngk.ru

vasijv › Blog › Что следует знать о калильном зажигании

Бензиновый двигатель без свечи зажигания – кусок металла, даже при условии, что все остальные его детали и части в полном порядке. С этой весьма незаметной деталью автомобильного двигателя у автомобилистов связано максимально большое число слухов, домыслов и легенд. Причем большинство из них – заблуждение. На самом деле единственным параметром свечи зажигания, который максимально влияет на «здоровье» двигателя, является калильное число (denso, bosch, ngk). Что такое калильное число и как оно связано с калильным зажиганием? В современных двигателях на бензиновом топливе применяется искровой способ зажигания, хотя это не единственная возможность произвести воспламенение топливной смеси в цилиндре. В одних из самых первых ДВС, называемых двигателем Даймлера или «полудизелем», запуск осуществлялся с помощью калильной свечи, которая разогревала головку цилиндра в первый момент запуска. После запуска свеча отключалась и двигатель работал уже без посторонней помощи. До сих пор не знаете преимуществ дизельного двигателя перед бензиновым? Потребность включать и выключать такую свечу во время впрыска топлива привела к созданию привычной для нас системы зажигания, работающей в прерывистом режиме. Однако то, что свеча, поджигающая топливную смесь, работает в прерывистом «искровом» режиме оказалось и наиболее слабым местом этого устройства. Искровой режим работы свечи, в совокупности с огромной температурой вспышки рабочей смеси, приводит к тому, что свеча неизбежно нагревается. Этот процесс имеет две стороны: положительную и отрицательную. Положительная — в том, что нагретая до определенной температуры свеча сама себя очищает от нагара, неизбежно образующегося при сгорании попадающего в цилиндры масла и примесей, содержащихся в бензине. Отрицательная — в том, что нагретая до температуры 800-900 градусов Цельсия свеча становится именно той калильной свечой двигателя Даймлера, от которой происходит воспламенение топливной смеси. Только вот выключить такую свечу некому, поэтому двигатель может работать даже при выключенном зажигании до тех пор, пока свеча не остынет или пока не прекратится поступление топливной смеси в цилиндр. Такой казус в работе двигателя называется калильным зажиганием. Калильное зажигание опасно для двигателя не только тем, что он выходит из-под контроля. Если не принять срочных мер для его остановки в случае калильного зажигания, то может произойти заклинивание поршневой группы вследствие перегрева двигателя, в лучшем случае образованию задиров на зеркале цилиндра. Причины калильного зажигания Наличие постоянно нагретой свечи провоцирует смещение момента зажигания в более раннюю сторону и, как следствие, возможный рывок коленвала двигателя в сторону, противоположную обычному направлению вращения. В общем, возможностей разнести двигатель буквально на кусочки при калильном зажигании очень много. Таким образом, перед конструкторами двигателей внутреннего сгорания встала проблема создания такой свечи зажигания, которая бы нагревалась до определенного уровня для самоочищения, но не вызывала калильного зажигания. Для характеристики момента, после которого возникает этот опасный инцидент с двигателем, было вычислено калильное число. Причем в процессе его определения оказалось, что чем большую нагрузку испытывает двигатель, тем большим должно быть калильное число, чтобы не возникло калильного зажигания. Мы можем сколько угодно смеяться над нашим автомобилестроением, но классификация по калильному числу отечественных свечей наиболее логичная и наглядная. Для определения момента, когда свеча зажигания начинает работать как калильная, ее вкручивают в головку одноцилиндрового испытательного двигателя и производят наддув воздуха, поступающего в карбюратор. Фактически применяют автомобильную турбину. В маркировке большинства отечественных автомобильных свечей зажигания первой идет литера «А», второй – цифра, и обозначающая калильное число. Так вот, по отечественной методике калильное число равно среднему индикаторному давлению цикла, при котором начинается калильное зажигание. Оно напрямую зависит от давления наддува, поэтому отечественная шкала калильного числа более наглядна. В этом видео парень очень грамотно описывает весь процесс зажигания свечи от начала до конца, и поясняет сам процесс калильного зажигания:

Профилактические меры

В качестве дополнительных мер, препятствующих появлению такого вредного явления, можно привести следующие рекомендации:

  • Правильный выбор свечей . Лучше, если для зимы и лета будет свой набор с разным калильным числом.
  • Постоянный контроль за системой охлаждения , профилактическая чистка радиатора.
  • Не допускать перегрева , следить за его чистотой, чтобы обеспечивать наилучший теплообмен.
  • Проводить регламентные работы и своевременно проводить ТО.
  • Контролировать нагрузку на двигатель и не подвергать его без нужды повышенным и максимальным нагрузкам.

Выполнение простых и общепринятых правил и выполнение профилактических мероприятий поможет сохранить двигатель автомобиля как можно дольше в работоспособном состоянии и позволит максимально отсрочить его ремонт.

В предыдущем номере нашего журнала было дано описание признаков и причин появления детонации. Но наиболее опасным аномальным процессом сгорания является калильное зажигание, возникающее еще до появления искры от перегретого источника воспламенения. Так начинается неуправляемый процесс сгорания. Преждевременное воспламенение приводит к увеличению давления и температуры в цилиндре. Из-за этого воспламенение в следующих циклах начинается все раньше и раньше и так до тех пор, пока что-то не выйдет из строя. В лучшем случае сгорит электрод свечи или расколется изолятор (при этом на короткий промежуток времени может появиться стук в двигателе, затем поршень раздробит осколок изолятора и стук прекратится). В худшем случае произойдет «задир» поршня или прогорит его днище (рис.1 и 2).

Вероятность появления калильного зажигания, так же как и других видов аномального сгорания, зависит от химического состава бензина, наличия в нем ароматических углеводородов, его фактического октанового числа (ФОЧ), степени сжатия конкретного двигателя, угла опережения зажигания, температурного режима двигателя, температуры и состава рабочей смеси. В отличие от детонации калильное зажигание возникает при высокой частоте вращения (конечно при большой нагрузке) и сопровождается глухими стуками, которые даже опытный водитель обычно не слышит из-за общего высокого уровня шума при движении с высокими скоростями. При этом на 10–15% снижается мощность. По падению мощности установить появление калильного зажигания можно только при движении с полностью открытой дроссельной заслонкой (при подъеме, движении с максимальной скоростью, когда скорость автомобиля неожиданно уменьшается). Но при движении по ровной дороге установить начало калильного зажигания сразу не удается.

К числу аномальных процессов сгорания в бензиновых двигателях относится и работа двигателя с самовоспламенением всего заряда рабочей смеси при выключении зажигании (процесс аналогичен дизельному). Его часто неправильно называют калильным зажиганием (калилкой). Из-за низкой частоты вращения коленчатого вала (100-200 об/мин) работа происходит с резкими рывками и стуками. Появление такого рода воспламенения может косвенно свидетельствовать об ухудшении теплоотдачи, например из-за чрезмерного отложения нагара в камере сгорания или повышенной склонности топлива к самовоспламенению. Для устранения этого явления большинство зарубежных карбюраторов и некоторые отечественные (ДААЗ-2103, 2106) снабжены специальными электромагнитными клапанами (Антидизель), отключающими подачу топлива через систему холостого хода при выключении зажигания. Большинство отечественных карбюраторов, таких как К-131, К-151 ( малотоннажные автомобили ГАЗ и УАЗ), ДААЗ-2105, 2107, 2108 и их модификации оснащены экономайзером принудительного холостого хода (ЭПХХ) для отключения подачи смеси при торможении двигателем. При выключении зажигания клапан ЭПХХ также отключает подачу смеси, предотвращая работу двигателя с самовоспламенением. Если двигатель, оснащенный этой системой, все же работает с самовоспламенением, необходимо ее проверить (обычно заедает клапан ЭПХХ или бывает прорвана мембрана). В двигателях без клапана ЭПХХ или Антидизеля самовоспламенение иногда удается устранить путем регулирования карбюратора. Необходимо уменьшить частоту вращения на холостом ходу. За счет уменьшения количества подаваемой смеси ее температура и давление в цилиндре падают и самовоспламенения при работе на нормальном бензине не происходит.

Защита от калильного зажигания

Трудно однозначно сказать, когда именно возникает калильное зажигание. Но превентивные меры всегда сводятся к следующему списку:

  1. Свечи должны соответствовать эксплуатационным характеристикам;
  2. Учитывается калильное число;
  3. Качество топлива;
  4. Периодическая диагностика.

Соответствие свечей – это главное условие, которое может предотвратить калильное зажигание

Важно учитывать калильное число, которое различно для каждого двигателя

Если свеча работает нормально, то температура ее изолятора находится в пределах 600 градусов, но если она выше или ниже, то очень скоро можно ждать нежелательных последствий. На холодных свечах может образовываться нагар, который нарушает работу свечи, и тогда развивается калильное зажигание.

Калильное число

Калильное число — это величина среднего индикаторного давления, при ко­тором в цилиндре двигателя при испытании свечи возникает калильное зажигание.

Прямое определение тепловой характеристики связано с необходимостью измерения температуры теплового конуса изолятора и электродов на работаю­щем двигателе. Это сложная техническая проблема, так как требует установки в свечу миниатюрных термопар и защиту их от высокого напряжения. Такая ра­бота требует огромных затрат и проводится только в исследовательских целях при доводке вновь разрабатываемых двигателей.

В связи с этим определение тепловой характеристики заменяют подбором све­чей по верхнему температурному пределу. Для этого производятся тепловые ряды конструктивно одинаковых свечей с различными тепловыми характеристиками.

Каждую свечу теплового ряда испытывают на моторной испытательной уста­новке, позволяющей за счет наддува моделировать тепловую напряженность двигателя с любой удельной мощностью, вплоть до самого форсированного спортивного. В процессе испытания величину наддува последовательно увели­чивают, соответственно возрастает тепловая напряженность и основной харак­теризующий ее показатель — величина среднего индикаторного давления.

Основным конструктивным параметром, с помощью которого изменяют вели­чину калильного числа, является длина теплового конуса изолятора. Чем длиннее тепловой конус изолятора, тем рабочая температура свечи больше, и наоборот, чем короче тепловой конус изолятора, тем температура меньше.

До 1974 г. свечи, производимые в СССР, имели в своей маркировке обозначение длины теплового конуса изолятора, выраженной в миллиметрах. Ветераны-авто­мобилисты помнят свечи с уралитовыми изоляторами для автомобиля «Запоро­жец» первых выпусков, которые имели маркировку А6УС или А7,5УС, свечи для автомобиля «Волга» ГАЗ-21 с маркировкой А14У, свечи А11У для автомобиля «Москвич-401» и многие другие. Интересно отметить, что на первые модели авто­мобилей ВАЗ ставились свечи с изолятором из керамики «боркорунд», также с маркировкой длины теплового конуса изолятора, сначала А6БС, затем А7,5БС. С появлением двигателей автомобилей ВАЗ-2101, ГАЗ-24, АЗЛК-412, ЗАЗ-966, ЗИЛ-130, ГАЗ-53 и других требования к свечам возросли. Выяснилось, что необхо­димо учитывать то, что рабочая температура свечи зависит не только от длины теплового конуса изолятора, но и от многих других конструктивных и технологи­ческих факторов. Ведь калильное число является интегральным показателем, ха­рактеризующим зависимость рабочей температуры свечи не только от длины теп­лового конуса, но и от других конструктивных факторов.

Каждой длине теплового конуса изолятора соответствует своя величина ка­лильного числа. В соответствии с российским стандартом калильные числа сле­дует выбирать из ряда 8, 11, 14, 17, 20, 23 и 26 условных единиц. Допускаются промежуточные значения, выраженные целыми числами.

С помощью калильных чисел различают более «горячие» и более «холодные» свечи. Эти понятия определены тем, что при установке на один и тот же двига­тель «горячие» свечи в равных условиях имеют рабочую температуру выше, чем «холодные». Устанавливая последовательно на двигатель свечи с различными калильными числами, можно осуществить подбор по тепловой характеристике. Первым критерием подбора является отсутствие калильного зажигания при пол­ной нагрузке двигателя. Вторым критерием является то, что ближайшая более «горячая» свеча вызывает калильное зажигание. Правильно подобранная свеча всегда должна иметь максимальную температуру, несколько ниже, чем темпера­тура калильного зажигания. При подборе к двигателю угол опережения зажига­ния устанавливают на 10-15° раньше относительно установочного. Этим спосо­бом искусственно повышают рабочую температуру свечи, что обеспечивает гарантированный запас до верхнего температурного предела.

Зарубежные фирмы применяют свои шкалы калильных чисел, прямые и об­ратные. В прямых шкалах с увеличением длины теплового конуса калильное чис­ло возрастает, а в обратных уменьшается. Отечественная шкала калильных чисел едина для всех производителей в России и является обратной. Чем больше ка­лильное число, тем короче при прочих равных тепловой конус, тем свеча «холод­нее». В отличие от нашей страны, за рубежом каждая фирма применяет свою шкалу калильных чисел и свою систему маркировки свечей. Для определения со­ответствия по калильному числу свечей различных производителей приходится пользоваться таблицами взаимозаменяемости.

Способы борьбы с нагаром

Удалить нагар можно несколькими способами. Первый, и самый простой из них – выпалить отложения к камере сгорания. Для этого всего лишь необходимо проехаться длительное время на высокой скорости. То есть, выезжаем на хорошую длинную трассу и «давим в пол» педаль газа. Результатом этого будет выгорание нагара и удаление его через выхлопную систему. Кстати, данный метод можно применять как профилактику. То есть, достаточно периодически «гонять» автомобиль, чтобы внутри камер сгорания не образовывался слой нагара.

Если первый способ результата не дал и калильное зажигание появляется, можно попробовать «размягчить» нагар, чтобы он сам отслоился. Для этого используется специальный раствор, состоящий из одной части моторного масла и четырех частей керосина.

Для двигателя потребуется 80-120 гр. такого раствора. После поездки, пока мотор еще горячий, в каждый цилиндр нужно залить по 20-30 гр. подготовленной смеси. После этого машина оставляется на сутки, чтобы раствор смог подействовать. Далее необходимо запустить силовую установку и дать ей поработать в течение получаса. После использования смеси в обязательном порядке меняется масляный фильтр и сам смазочный материал.

Если и второй способ не помог, то придется удалять нагар механическим способом. То есть придется с авто снимать головку блока и счищать имеющиеся слои при помощи щетки по металлу и скребков, предварительно замочив все керосином. Удалять нагар нужно не только с поверхности камеры сгорания, а и с поршней и клапанов. Этот метод самый трудоемкий, но зато после него вы будете полностью уверены, что внутри цилиндров все чисто.

Горение топливовоздушной смеси

Дело в том, что при детонации происходит неправильное горение топливовоздушной смеси. При КЗ же не нормативен только поджог смеси, а её горение происходит в обычном режиме.

При детонации поджигание смеси происходит со скоростью, превышающей скорость звука. Грубо говоря, в цилиндре происходит небольшой взрыв. При КЗ же смесь воспламеняется с такой же скоростью, с которой она воспламенялась бы от электрической искры.

Последствия

Детонация считается более опасным явлением.

При детонации разрушается масляная плёнка, что способствует ускоренному изнашиванию деталей из-за сухого трения. Взрыв при детонации может нанести механические повреждения деталям. Из-за детонации двигатель может перегреться. Длительная езда с условием детонации может привести к необходимости капитального ремонта или замене двигателя.

Последствия калильного зажигания не так глобальны, но тоже сулят неприятностями.

При КЗ испортятся свечи зажигания и их изоляторы. Могут образоваться задиры на зеркале цилиндров и поршне. Также у поршня может прогореть дно. Поршневые детали может попросту заклинить.

Исправляем паразитный эффект

Излечить подобное недомогание автомобиля несложно. Лучше это сделать, пока не появились неприятные последствия негативного эффекта. Для этого, возможно, достаточно будет заменить свечи зажигания вместе с изоляторами.

Также обратитесь к специалистам. Пусть они проверят, правильно ли у вас настроены механизмы поджога смеси и газоотведения. Возможно, именно в них кроется причина калильного, а не искрового зажигания смеси.

Если приходится использовать автомобиль на больших оборотах, позволяйте ему немного передохнуть.

Не допускаем паразитного эффекта

Для того чтобы смесь в вашем автомобиле воспламенялась только от электрической искры, регулярно проверяйте свечи на наличие нагара, так как он может накаливаться не хуже изолятора.

Внимательно настраивайте механизм поджога смеси (если делаете это самостоятельно), не допускайте его смещения к более ранней фазе. И лучше самостоятельно не корректируйте механизм газоотведения, а обратитесь к специалистам. Ну и конечно, в машине должны быть установлены свечи с правильным калильным числом.

Если пальцы стучат при нагрузке

Кто говорит что пальцы стучат, кто — звенят, у третьих они хрустят. Это звук быстрого сгорания смеси, либо взрывного ее сгорания — детонации. Детонация очень опасное для двигателя явление. Скорость сгорания бензовоздушной смеси увеличивается с 10-15 м/с. до полутора км/с. Взрывная волна ударяет по цилиндро-поршневой группе. Механические и тепловые нагрузки на нее критически возрастают, однако двигатель теряет мощность. Энергия топлива теперь действует разрушительно на детали ЦПГ.

Причиной детонации являются:

  • Применение бензина с октановым числом ниже, чем предписано заводом-изготовителем.
  • Большой угол опережения зажигания (УОЗ).
  • «Пальцы стучат» под нагрузкой на несоответствующем режиме. Например, машина еле тянет в горку, а водитель, вместо того чтобы переключиться на низшую передачу, жмет на газ.
  • «Пальцы также стучат» в моторе при разгоне, (из-за неправильной регулировки УОЗ, низкооктанового бензина, неисправности датчика детонации и т.д.)

Детонации способствуют повышение температуры воздуха и бедная топливовоздушная смесь.

Последствия детонации тяжелые. 

  • В первую очередь ломаются кольца и межкольцевые перегородки поршня.
  • Дает трещины днище поршня.
  • При окончательном разрушении поршня шатун может проломить блок и выйти наружу.

На старых машинах угол опережения зажигания выставлялся по стробоскопу, но потом корректировали на слух. Для этого поворачивали вокруг своей оси корпус прерывателя-распределителя зажигания (трамблера). При резком нажатии на газ, пальцы должны были хрустнуть, но совсем чуть-чуть. Если этого не происходило, трамблер поворачивали в одну сторону, если стоял настойчивый звон — в другую.

Видео: Почему Детонирует Двигатель ВАЗ 2109

Последствия детонации

Не думайте, что детонация увеличит мощность двигателя из-за того, что скорость распространения взрывной волны почти в 100 раз выше. Вы можете выделить основные недостатки детонации:

  1. Взрывные волны существуют на 1/10000 секунд меньше, до тех пор, пока увеличивается давление, действующее на поршень. Чрезвычайно мало времени для значительного увеличения мощности двигателя. Но детонация нанесет большой ущерб в такой период времени.
  2. Когда двигатель работает, на стенках цилиндра образуется масляная пленка, что способствует более плавному скольжению поршней, а взрывная волна разрушает его, что приводит к повышенному износу и ухудшению коррозионной стойкости.
  3. Давление взрывной волны достигает 70 кгс / см². Такое давление может вызвать разрушение элементов цилиндро-поршневой группы.
  4. Теплопередача к охлаждающему корпусу усиливается взрывными волнами. Двигатель перегревается, на поршнях лопаются края, выходит из строя прокладка головки, выходят из строя свечи зажигания.

Если произошла детонация двигателя ВАЗ 2109, его необходимо устранить, иначе ресурс двигателя и его компонентов будет значительно уменьшен, а стоимость обслуживания автомобиля станет выше.

Факторы детонации

Причин их появления может быть много, но у них есть одна общая черта: уменьшается задержка самовозгорания топливовоздушной смеси (несгоревшей фракции), снятой с электродов свечи зажигания. Если это проще, то все условия для окислительных процессов имеют место в камерах сгорания. На появление детонации влияют:

  1. Качественный состав горючей смеси. Если соотношение воздух / бензин = 0,9, топливная смесь при попадании в камеру сгорания образует очаги в разных местах. Именно в них начинают происходить окислительные реакции, позже они воспаляются.
  2. Увеличение времени зажигания приводит к тому, что максимальное давление при сгорании смеси наблюдается в тот момент, когда поршень находится практически в верхней мертвой точке. В результате увеличивается давление и происходит детонация.
  3. Слишком низкое октановое число бензина влияет на появление характерных стуков. Если вы заправитесь бензином АИ-92, то, когда АИ-80 попадет в бак, двигатель изменится, причем значительно. Чтобы избежать таких проблем, нужно покупать топливо на проверенной заправке. Или вариант 2. Установка октанового корректора.
  4. Чем выше степень сжатия, тем выше октановое число бензина.

READ Jeep Grand Cherokee 2022 года становится все яснее

Конструктивные особенности двигателя влияют на появление детонации, но в меньшей степени.

Предотвращение детонации

Чтобы избежать появления взрывных волн в камерах сгорания, необходимо устранить все факторы, описанные в предыдущем разделе. Необходимо ускорить сгорание топливной смеси, замедлить реакции окисления, которые являются источником самовозгорания. Взрывные волны обнаруживаются датчиком детонации ВАЗ 2109 (инжектор), который установлен в блоке цилиндров двигателя между 2 и 3 цилиндрами. Это влияет на явление пьезоэлектрического эффекта. При попадании на активный элемент (мембрану) генерируется определенный потенциал. Чем сильнее удар, тем больше разность потенциалов (напряжение).

Электронный блок управления считывает данные и сравнивает их с топливной картой (прошивка). Показания других датчиков анализируются аналогичным образом. В результате компьютер выбирает наиболее оптимальный режим работы двигателя из топливной карты, передает сигналы на исполнительные механизмы. Время зажигания, время открытия форсунки и т. Д. Но если датчик детонации (на карбюраторных двигателях) отсутствует, необходимо увеличить скорость вращения коленчатого вала. Окислительная реакция длится меньше, вероятность самовозгорания уменьшается.

Датчик детонации ВАЗ 2109 устанавливается только на инжекторные двигатели. Их нет на карбюраторе, поэтому вам нужно раскрыть это явление самостоятельно. Частой неисправностью девяти является появление детонации после выключения зажигания. Двигатель продолжает работать, и скорость может измениться, даже если ключ вынут. Причиной является неправильное регулирование качественного состава топливной смеси. Это происходит в следующих случаях:

  1. Загрязнение энергосистемы.
  2. Скручивание винта.
  3. Неисправность датчика (клапан на карбюраторных двигателях) на холостом ходу.

На двигателях с впрыском устанавливается регулятор холостого хода, выход из строя которого может вызвать детонацию после отключения; на карбюраторных клапанах клапан отключает подачу бензина в камеру сгорания на холостом ходу.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий